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Abstract
Matrix models and related spin Calogero–Sutherland models are of major
relevance in a variety of subjects, ranging from condensed matter physics
to QCD and low-dimensional string theory. They are characterized
by integrability and exact solvability. Their continuum, field theoretic
representations are likewise of definite interest. In this paper we describe
various continuum, field theoretic representations of these models based on
bosonization and collective field theory techniques. We compare various known
representations and describe some nontrivial applications.

PACS numbers: 02.10.Yn, 02.30.Ik, 11.25.−w, 75.10.−b

1. Introduction

Matrix models in general and specially their simpler N-body cousins can be studied effectively
in the large N limit through continuum, collective field-type techniques. The one-matrix
problem in its fermionic reduction gave a systematic perturbative representation of a low-
dimensional noncritical string theory [4, 25, 39, 49, 54]. Its continuum, collective field
representation gave major insight into the origin of the extra (Liouville) dimension and
the Tachyon mode. On the other hand, understanding of nonperturbative effects such as
vortices and black holes clearly requires the full understanding of the theory [20, 40, 53],
possibly including gauge degrees of freedom. Recently, for example, the dynamics of long
strings or FZZT branes was successfully simulated by nonsinglet degrees of the matrix [56].
The continuum, field theoretic representations of these theories can be formulated through
techniques of non-Abelian bosonization or collective field theory [9, 12, 13, 71]. The
resulting Hamiltonians are written in conformal field theory notation and exhibit higher,
Yangian symmetry of the form studied in [14, 17–19, 42, 66].

Because of their relevance, it is of considerable interest to further study these continuum,
field theoretic representations. They hold the potential for giving answers to a number of
(nonperturbative) problems both in string theory and condensed matter physics.
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In this review we describe in some detail the continuum, collective field theory techniques
and study the relationship between the continuum field theories that result. We also
demonstrate the usefulness of the bosonic, collective field representation by presenting some
nontrivial applications; in one we discuss in the field theory setting the linearized spectrum
equation, which is shown to take the form of an eigenvalue problem due to Marchesini and
Onofri [57]. This eigenvalue problem has recently appeared in a number of matrix theory
applications. Our second demonstration concerns the treatment of nontrivial backgrounds
associated with nontrivial states of the theory. In particular, we study the theory in a
semiclassical background associated with the quantum many-body state found by Haldane
and Ha [41]. This gives a highly nontrivial example where exact results are known and serves
as a demonstration of how nontrivial backgrounds appear in the collective field framework.

The outline of the review is as follows. In section 2 we introduce the spin Calogero–
Sutherland (CS) model and describe in detail its relationship with the matrix model. In
section 3 we give details of the bosonization procedure of the spin CS Hamiltonian in the
conformal field theory language. In section 4 the same Hamiltonian is studied using collective
fields. Sections 5 and 6 describe some nontrivial applications of this theory. Possible, further
applications are also discussed in the conclusion.

2. From matrix models to spin Calogero–Sutherland models

Various reductions of matrix models lead to simpler many-body problems of the spin Calogero–
Sutherland type [2, 5–8, 23, 34, 35, 38, 51, 59, 60, 63, 65, 67, 70, 72]. We begin by describing
the general scheme for such reductions (in the case of Euclidean metric, the more general
case of Riemannian symmetric spaces can be seen in recent work [31, 32]). Consider matrix
quantum mechanics defined by the Hamiltonian [20, 57]

H = Tr

(
1

2
�2 +

(
N

g

)
V
(( g

N

)
�2

))
. (1)

Here, � represents a Hermitian N × N matrix and the scaling of coupling constants (by N) in
the general, polynomial potential V is done in accordance with ’t Hooft’s large N limit. The
Hamiltonian acts on the Hilbert space of square integrable functions defined with respect to
the invariant measure [d�] = ∏

�aa

∏
a<b d�abd�ba .

The invariance of the theory under SU(N) transformations implies that the eigenstates
are described by unitary irreducible representations of SU(N). To exhibit the group theoretic
degrees of freedom, it is convenient to use a ‘polar’ decomposition of the matrix coordinate
�, and perform a separation of eigenvalues (of the matrix) and the angles

� = �†�� ⇔ �ab =
∑

i

(�†)aiλi(�)ib, (2)

where � = diag(λ1, . . . , λN). Indices a, b, c = 1, . . . , N , and i, j = 1, . . . , N , will denote
the internal indices throughout. One notes that � ∈ SU(N)/H, with H being the stability
subgroup of � under SU(N). Equation (2) can be rewritten as

�ab(�
†)bi = λi(�

†)ai, (3)

so we can conclude that (�†)bi is the component b of the ith eigenvector of the matrix �, with
the corresponding eigenvalue λi .

Defining vectors Zi and Z̄i by their components Zi
a = �ia and Z̄i

a = (�†)ai = �̄ia

(Z̄i
a is the complex conjugate of Zi

a), we can determine the constraints on these vectors
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coming from � ∈ U(N). Because � is unitary, we have

�†� = 1l ⇒
∑

i

Z̄i
aZ

i
b = δab,

��† = 1l ⇒
∑

a

Zi
aZ̄

j
a = δij .

These two constraints state the completeness and orthonormality of the eigenfunctions,
respectively. We can write the eigenfunction equation in terms of the eigenvectors Z̄i as

�abZ̄
i
b = λiZ̄i

a. (4)

To evaluate the form of the Hamiltonian after the above transformation, one needs the
following identities, obtained by using the chain rule:

δλi

δ�bc

= Zi
bZ̄

i
c,

δZ̄i
a

δ�bc

=
∑
j( �=i)

Z̄
j
aZ

j

b Z̄
i
c

λi − λj

,
δZi

a

δ�bc

=
∑
j( �=i)

Zi
bZ̄

j
c Z

j
a

λi − λj

.

We can now apply these rules to the kinetic term (we will use the notation where repeated
indices are summed over unless stated otherwise). First,

∂

∂�bc

= Zi
bZ̄

i
c

∂

∂λi

+
∑
j(�=i)

Zi
bZ̄

j
c Z

j
a

λi − λj

∂

∂Zi
a

+
∑
j( �=i)

Z̄
j
aZ

j

b Z̄
i
c

λi − λj

∂

∂Z̄i
a

,

and then,

−Tr(�2) =
∑
b,c

∂

∂�cb

∂

∂�bc

=
∑

i

∂2

∂λ2
i

+ 2
∑
i �=j

1

λi − λj

∂

∂λi

+
∑
i �=j

Q̄ijQij

(λi − λj )2
, (5)

where we defined

Qij ≡ i
∑

a

{
Zi

a

∂

∂Z
j
a

− Z̄j
a

∂

∂Z̄i
a

}
≡ i

{
Zi ∂

∂Zj
− Z̄j ∂

∂Z̄i

}
, (6)

Q̄ij = Qji = i

{
Zj ∂

∂Zi
− Z̄i ∂

∂Z̄j

}
. (7)

The sum in the matrix variable a has been omitted. Qij is a set of noncommuting differential
operators that only depend on the angular coordinates. An equivalent way of writing the above
result is [57]

Tr(�2) = − 1

�

∑
i

∂2

∂λ2
i

� −
∑
i �=j

QijQji

(λi − λj )2
. (8)

Here, � = ∏
i<j (λi −λj ) is the Vandermonde determinant, representing the invariant measure

[d�] = �2dλ1 · · · dλN [d�], where [d�] is the invariant volume element in U(N). An
equivalent way of deriving (8), based on the line element, can be found for example in [57].
In general, the potential terms are easily expressible in terms of the eigenvalues and the full
matrix Hamiltonian becomes

H = −1

2

1

�

∑
i

∂2

∂λ2
i

� +
N

g

∑
i

V
(( g

N

)
λ2

i

)
+
∑
i �=j

QR
ijQ

R
ji

(λi − λj )2
. (9)

We have put in this last result the explicit dependence on the representation R of SU(N),
as QR

ij are the matrices corresponding to the ij generator of SU(N) in the representation R
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[20, 56], since the theory can be studied in each sector separately1. In the simplest case
of SU(N) invariant singlet states, the matrix model reduces to a many-body problem of
free fermions. The system with V being an inverted oscillator represents a 2D noncritical
string theory. Classical Hamiltonian reduction with a particular (nonzero) value of angular
momentum is known to lead to a Calogero-type Hamiltonian for the eigenvalues [21, 61].
In order to obtain a trigonometric form of the Hamiltonian, namely the Calogero–Sutherland
model, one uses a unitary matrix model (with � unitary). Continuing our discussion at the
quantum level, the next relevant case is that of adjoint states of SU(N), studied first in [57]
and a number of works thereafter.

Models of similar type also show up in the singlet sector of matrix-vector-type theories
[9]. We have in the above introduced a notation where the eigenvectors of the matrix appear
as vector-like variables to emphasize the correspondence with that type of theories. In the
full matrix theory case, the flavour index clearly ranges from 1 to N. One can then consider a
reduction in the number of vector degrees of freedom to a fixed number R. The particular case
of a spin chain appears if we represent the operators of the SU(N) algebra through fermions
Qij = ∑R

α=1 
†
α (i) 
α (j) and constrain the value of the number operator at each site

Ni ≡
R∑

α=1


†
α (i) 
α (i) = 1.

Here, 
α (i) (α = 1, . . . , R) are complex U(N)-vector fermionic degrees of freedom, and R
labels the number of independent components acting like a flavour index [2, 70].

With the above constraint, we can write

QijQji =
1 −

R∑
α,β=1

Qαβ (i) Qβα (j)

 ,

by defining Qαβ (i) ≡ 
†
α (i) 
β (i), and obtain a representation with generators at each site:

QijQji = (1 − Ji · Jj ).

This corresponds to a Haldane–Shastry spin–spin interaction [38, 41, 63, 72].
Our main concern in the present review is the continuum, field theoretic representation

of this class of models. This representation is based on composite, collective fields and can
be reached through various bosonization procedures. The basic form of such continuum, field
theoretic representation of the many-body Hamiltonian is given by a conformal field theory
with dynamical SU(R) charges [9]:

H = b

∮
z2

(
1

6
(α(z))3 + α(z)T J (z)

)
+ c(R)W(z)

+
∮

dz

∮
dw

zw

(z − w)2
(J (z) · J (w) + α(z)α(w)). (10)

In the above Hamiltonian, b is a general constant and c(R) is a specific R-dependent constant.
α(z) is a bosonic scalar field coupled to a level k = 1 current algebra, which participates in
the Hamiltonian through a spin-2 W -algebra energy–momentum tensor T J (z) and a spin-3
W -algebra generator W(z), both built from the su(R) current algebra [37]. One should be
aware of the fact that the full Hamiltonian will have both k = 1 and k = −1 current algebras,
and the corresponding bosonic U(1) scalar fields.

1 One further comment is in place. The possible representations R of SU(N) are restricted to irreducible
representations which have a state with all weights equal to zero [40, 56].
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For the purposes of this paper, we will concern ourselves with the particular case of su(2),
namely R = 2, which will be used to illustrate most of the relevant dynamical features. More
details of the general case of su(R) and also the large R limit can be found in [9] and [50]. Of
considerable future interest is the case R = N with N → ∞. Aspects of the R = N → ∞
theory were already given in [50]. Through the large N limit of the current algebra, one
realizes a W∞ algebra, the expected symmetry of the matrix model [10].

3. Current algebra representation

We will now proceed with the study of the spin Calogero–Sutherland model by describing in
detail its bosonized current algebra representation. The standard form of the spin Calogero–
Sutherland model is given by (for example, [41])

H = −1

2

∑
i

∂2

∂x2
i

+
1

4

(π

L

)2 ∑
i �=j

β(2β + 1 + �σi · �σj )

sin2
[

π
L
(xi − xj )

] , (11)

where 2π
L

xi ∈ [0, 2π ] is the coordinate on the circle.
The spin–spin interaction is equivalently written in terms of the spin-exchange operator

Pij . Recalling that J a
i = 1

2σa
i for each particle i, we have the relation

Pij = J +
i J−

j + J−
i J +

j + 2
(
J z

i J z
j + 1

4

) = 1
2 [�σi · �σj + 1].

Consequently, we can rewrite (11) as

H =
(

2π

L

)2 1

2

∑
i

D2
i −

∑
i �=j

zizj

(zi − zj )2
β(β + Pij )

 , (12)

where Di = zi
∂

∂zi
and zi = ei 2π

L
xi . From now on, we will drop the factor of

(
2π
L

)
from the

Hamiltonian. In general, models of the Calogero type possess several universal properties.
First of all, they describe particles with generalized statistics, governed by the coupling constant
β, see [64]. Introducing a position-exchange operator Kij , we have that PijKij = 2x − 1
(x = +1 is the case of boson while x = 0 is for fermions), for the corresponding wavefunctions


(. . . , ziσi, . . . , zjσj , . . .) = (−1)x+1
(. . . , zjσj , . . . , ziσi, . . .).

For the bosonization method, we will have to consider a system of fermions. In general,
one can go to fermionic (or bosonic) versions of the Hamiltonian by applying a similarity
transformation

H̃ = 2

(
L

2π

)2

�−βH�β − E0,

where

�β =
∏
i<j

sinβ

(
1

2
(xi − xj )

)
=
∏
i<j

(zi − zj )
β
∏

i

z
−β N−1

2
i ,

E0 = β2 N(N2 − 1)

12
.

By means of some identities, such as

zizk

(zj − zi)(zj − zk)
+

zkzj

(zi − zk)(zi − zj )
+

zj zi

(zk − zj )(zk − zi)
= 1,
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the similarity transformation given above provides an effective fermionic Hamiltonian of the
form

H̃ =
∑

i

D2
i +

β

2

∑
i �=j

zi + zj

zi − zj

(Di − Dj) − β

2

∑
i �=j

zizj

(zi − zj )2
(3 + �σi · �σj ). (13)

Through standard second quantization, the Hamiltonian (13) is written in terms of
fermionic fields


̃ =
(

ψ1

ψ2

)
, J i = 
̃† σ

i

2

̃ (i = 1, 2, 3), (14)

obeying the anti-commutation relations (a = 1, 2)

{ψa(x), ψb(y)} = δabδ(x − y).

Before continuing, we shall review some important aspects of the bosonization procedure.
In the Abelian bosonization procedure, each fermi field ψ,ψ † is expressed in terms of a

boson φ by the formulae (as references on bosonization, see [30, 37, 68])

ψ(θ) = 1√
2π

: e−iφ(z) :, ψ †(θ) = z√
2π

: eiφ(z) := zψ †(z).

As there are two fermion fields ψa , two bosons φa will be needed. Because we have more
than one species of fermionic fields (i.e. two), we also need to employ Klein factors to ensure
anti-commutativity among the species. This will be particularly relevant when considering
the 4-fermion interactions later.

After normal ordering, one has

: ψ †(w′)ψ(w) := iw

2π
∂wφ,

: ψ †(w′)∂wψ(w) := iw

2π

{
i

2
∂2
wφ +

1

2
(∂wφ)2

}
,

: ψ †(w′)∂2
wψ(w) := w

2π

{
i

3
∂3
wφ + (∂wφ)

(
∂2
wφ

) − i

3
(∂wφ)3

}
.

For the U(1) currents αa(z), (a = 1, 2), associated with each fermionic field ψa(z), we
have

αa(z) ≡ ψ †
a(z)ψa(z) = i∂zφa, (15)

For each of the fermions, the energy–momentum tensor is of the form

T a = −ψ †
a∂ψa = 1

2

(
∂ψ †

aψa − ψ †
a∂ψa

) − 1
2∂

(
ψ †

aψa

)
, (16)

corresponding to a central charge c = −2.2

A central role will be played by the SU(2) currents given by

J z = 1
2

[
ψ

†
1ψ1 − ψ

†
2ψ2

] = 1
2J 1(z) − 1

2J 2(z)

J± = 1
2 
̃†(σ 1 ± iσ 2)
̃ ⇒ J + = ψ

†
1ψ2, J− = ψ

†
2ψ1.

They obey a level-1 su(2) current algebra with the energy–momentum tensor being

T (z) = −
̃†∂
̃ = −ψ
†
1∂ψ1 − ψ

†
2∂ψ2 = T 1(z) + T 2(z). (17)

This will generate a Virasoro algebra of central charge c = −4, which is expected as we are
looking at a theory with two anti-commuting fermions ψ1, ψ2.

2 For an energy–momentum tensor of the form T = 1
2 (∂ψ†ψ − ψ†∂ψ) + µ∂(ψ†ψ), the central charge equals

c = 1 − 12µ2.
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We can proceed with the bosonization of the Hamiltonian. We distinguish three distinct
terms in the Hamiltonian as

H̃ = −
N∑

i=1

∂2

∂x2
i︸ ︷︷ ︸

H1

−β

2

∑
i �=j

cot

(
xi − xj

2

)(
∂

∂xi

− ∂

∂xj

)
︸ ︷︷ ︸

H2

+
β

4

∑
i �=j

sin−2

(
xi − xj

2

)
(1 + Pij )︸ ︷︷ ︸

Hs

.

(18)

The first term in the Hamiltonian becomes

H1 → −
∫

dx
̃†(x)
∂2

∂x2

̃(x) =

∮
dz

iz

̃†(z)[z∂ + z2∂2]
̃(z)

=
∑

a

∮
dz

2π i

[
z2

{
i

3
∂3φa + ∂φa∂

2φa − i

3
(∂φa)

3

}
+ z

{
i

2
∂2φa +

1

2
(∂φa)

2

}]
.

In the case of the second term, we have to be more careful since one has a pole at coincident
points (we handle this by point-splitting regularization):

H2 → −β

∫
dx

∫
dy 
̃†(x)
̃†(y) cot

(
x − y

2

)

̃(y)

∂

∂x

̃(x) + β

∫
dx
̃†(x)

∂2

∂x2

̃(x).

Note that the last term is just H1, bosonized before. Going to complex coordinates,

H2 = −β
∑
a,b

∮
dz

z

∮
dw

w

z + w

z − w
ψ †

a(z)ψ
†
b(w)ψb(w)z∂zψa(z) − βH1,

= β
∑
a,b

∮
dz

2π i

∮
dw

2π i

(
z + w

z − w

)
i∂wφbz

[
i

2
∂2
z φa +

1

2
(∂zφa)

2

]
− βH1,

where the contour integral of w has to be averaged over outer and inner circles around the z

contour.
Finally, we come to the bosonization of the last term Hs of our Hamiltonian:

Hs = β

8

∑
i �=j

sin−2

(
xi − xj

2

)
(3 + �σi · �σj )

→ 3β

8

∫
dx

∫
dy 
̃†(x)
̃†(y) sin−2

(
x − y

2

)

̃(y)
̃(x)

+
β

8

3∑
k=1

∫
dx

∫
dy sin−2

(
x − y

2

)

̃†(x)
̃†(y)σ k
̃(y)σ k
̃(x).

Again we encounter a singularity; the pole is now of second order, and so a regularization
gives a zero contribution. Going to the complex plane,

Hs = −3β

2

∑
a,b

∮
dz

2π i

∮
dw

2π i

i∂zφazwi∂wφb

(z − w)2

+
β

2

∑
k

∫
dx

∫
dy


̃†(y) σk

2 
̃(y)
̃†(x) σk

2 
̃(x)

sin2
(

x−y

2

) ,

where the integration on w is to be done around the z contour. Important to point out is the
bosonized representation for the spin-permutation operator Pij :
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−β
∑
i �=j

zizj

(zi − zj )2
Pij → β

∑
a,b

∮
dz

∮
dw

ψ
†
b(z)ψ

†
a(w)ψb(w)ψa(z)

(z − w)2

= β
∑
a,b

∮
dz

2π i

∮
dw

2π i
: e−i(φa(w)−φb(w)) :

zw

(z − w)2
: e−i(φb(z)−φa(z)) :

because it has a very similar form to the one that will be found in the following section by
collective field theory methods.

Returning to the full Hamiltonian, its final form in the bosonized representation reads

H̃ = 1 − β

6

∮
dz

2π i

[
2z2α3

a + 3zα2
a + αa

]
+

β

2

∮
dz

2π i

∮
dw

2π i

z + w

z − w
αb(w)z

[
∂αa(z) − zα2

a(z)
]

− 3β

2

∮
dz

2π i

∮
dw

2π i

zw

(z − w)2
αa(z)αb(w) + 2β

∮
dz

∮
dw

zw

(z − w)2

3∑
k=1

J k(w)J k(z).

The indices a, b are summed over, and αa = i∂φa . We can also express the Hamiltonian in
terms of the spin β and charge B bosons3, given by

B(x) = α1(x) + α2(x), β(x) = α1(x) − α2(x). (19)

With these, we have

H̃ = 1 − β

12

∮
dz

2π i
[z2B(z)(B2(z) + 3β2(z)) + 3z(B2(z) + β2(z)) + 2B(z)]

− β

2

∮
dz

2π i

∮
dw

2π i

(
z + w

z − w

)
B(w)

[
z∂B(z) − 1

2
z(B2(z) + β2(z))

]
− 3β

2

∮
dz

2π i

∮
dw

2π i

zw

(z − w)2
B(z)B(w) + 2β

∮
dz

∮
dw

zw

(z − w)2

3∑
k=1

J k(w)J k(z).

(20)

We can see in this final expression the general structure given in equation (10). We
will discuss in more detail a comparison of various representation further below. We will
furthermore see that the same form of the Hamiltonian can be obtained by collective field
techniques as a second way of determining the bosonized Hamiltonian. Finally, the usefulness
of the bosonized representation will be demonstrated in selected applications involving studies
of a nontrivial classical background.

3.1. Mode expansion

It is useful to present also the mode expansion of the bosonized Hamiltonian. We start by
introducing the mode expansions for the fermionic fields ψa (a = 1, 2):

ψ †
a(z) =

∑
n

ψ
a†
−nz

−n−1, ψa(z) =
∑

n

ψa
n z−n, (21)

with commutation relations
{
ψa

n , ψ
b†
m

} = δm,nδ
ab. We also need the expansion of the U(1)

currents:

αa(z) ≡ ψ †
a(z)ψa(z) = i∂zφa =

∑
n

αa
nz

−n−1, (22)

3 We believe that the reader will be able to distinguish between the statistics parameter and the spin field, both
labelled β. The latter will be supplemented with an argument, for example, β(z), in order to avoid confusion.
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with commutation relations
[
αa

n, α
b
m

] = nδabδm+n,0. The components of the current αa can be
written in terms of the fermionic field modes as

αa
n =

∮
dz

2π i
znψ †

a(z)ψa(z) =
∑
�,m

∮
dz

2π i
zn−(�+m)−1ψ

a†
−�ψ

a
m =

∑
m

ψ
a†
m−nψ

a
m. (23)

For each of the fermions, we have the energy–momentum tensor

T a = −ψ †
a∂ψa =

∑
n

La
nz

−n−2. (24)

The Virasoro generators La
n are given by

La
n = −1

2

∮
dz

2π i
zn+1ψ †

a∂ψa = −
∑
�,m

∮
dz

2π i
zn−(�+m)−1 (−m)ψ

a†
−�ψ

a
m =

∑
m

mψ
a†
m−nψ

a
m.

(25)

Consider next the operators of a su(2) current algebra J i(z) (i, j, k = 1, 2, 3 ≡ x, y, z).
These can be expanded as J i(z) = 1

2π

∑
N J i

Nz−N−1, with

2πJ x
n = 1

2
(J + + J−)n = 1

2

∑
m

[
ψ

1†
(m−n)ψ

2
m + ψ

2†
(m−n)ψ

1
m

]
,

2πJ y
n = 1

2i
(J + − J−)n = − i

2

∑
m

[
ψ

1†
(m−n)ψ

2
m − ψ

2†
(m−n)ψ

1
m

]
,

2πJ z
n = 1

2

(
α1

n − α2
n

) = −1

2

∑
m

[



2†
(m−n)ψ

2
m − ψ

1†
(m−n)ψ

1
m

]
,

(26)

with the commutation relations[
J i

n, J
j
m

] = iεijkJ k
m+n +

n

2
δij δm+n,0. (27)

We already introduced the charge field (the B field) and the spin field (the β field), and
saw that to bosonize the Hamiltonian, we needed two scalar bosonic fields α1, α2, because we
were interested in the SU(2) current algebra. If we now identify αi ≡ ασi , where σ = ±1
(or alternatively σ1 = ↑ and σ2 = ↓), then the following expansions hold, in terms of z

coordinates: {
B(z) = ∑

n Bnz
−n−1

β(z) = ∑
n βnz

−n−1
where

{
Bn = ∑

σ ασ
n

βn = ∑
σ σασ

n

. (28)

In terms of the su(2) current algebra, given the two fermionic fields ψ1 = ψ↑ and
ψ2 = ψ↓, the spinor field 
 = (ψ1 ψ2)

T and the currents J k = 
† σ k

2 
, the total theory has
an energy–momentum tensor with the central charge c = −4. Its decomposition into a level
k = 1 su(2) current algebra

{
J k

m

}
and a Heisenberg algebra {Bn} is such that Tm is composed

of two Virasoro algebras, one related to the currents J , with charge c = 1, and one related to
‘free’ bosons with charge c = −5

Tm = LJ
m + LB

m,

where

LB
m = 1

4

∑
n∈Z

: B−nBn+m : +
1

2
(m + 1)Bm, (29)

LJ
m = 1

4

∑
e∈Z

: β−mβn+m : . (30)
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We can now expand the bosonized Hamiltonian in terms of modes. We go back to the
expression for the bosonized Hamiltonian (20), and, by separating the several terms and by
making use of expansion (28), the first term becomes

H1 ≡ (1 − β)

(B0 + 1)

(
1

3
LB

0 + LJ
0

)
+
∑
n�1

(
B−n

(
1

3
LB

n + LJ
n

)
+

(
1

3
LB

−n + LJ
−n

)
Bn

) .

For the second term, we have

H2 ≡ β

2

2
∑
n�1

nB−nBn − 2
∑
k�1

(
LB

−kBk − B−kL
B
k + kB−kBk

) − 2
∑
k�1

(
LJ

−kBk − B−kL
J
k

).

Finally, the third term will become

H3 ≡ −3β

2

∑
n�1

nB−nBn − 2β

3∑
k=1

∑
n�1

nJ k
−nJ

k
n .

The final result for the total Hamiltonian in terms of boson (and current) modes is

H̃ = (β − 1) (B0 + 1)

(
1

3
LB

0 + LJ
0

)
+

1 + 2β

3

∑
n�1

B−nL
B
n +

1 − 4β

3

∑
n�1

LB
−nBn

+
∑
n�1

B−nL
J
n + (1 − 2β)

∑
n�1

LJ
−nBn − 3β

2

∑
n�1

nB−nBn − 2β
∑
n�1

nJ−n · Jn. (31)

We now comment on the relation of the above bosonized Hamiltonian to the various
bosonized versions of the model studied in the literature. First, by a simple change of our
notation,

β → − 1

α
, HU = αH̃ , (32)

we obtain a form analogous to the one constructed by Uglov in [71]

HU = E0 + (α + 1) (B0 + 1)

(
1

3
LB

0 + LJ
0

)
+

α − 2

3

∑
n�1

B−nL
B
n +

α + 4

3

∑
n�1

LB
−nBn

+ α
∑
n�1

B−nL
J
n + (α + 2)

∑
n�1

LJ
−nBn +

3

2

∑
n�1

nB−nBn + 2
∑

k

∑
n�1

nJ k
−nJ

k
n ,

(33)

with

[Bn,Bm] = 2nδn+m,0. (34)

One can also see that the bosonized Hamiltonian described above fits into a (more
symmetric) form of the representation originally constructed in [9], which reads

HAJL = b

6q

∑
ni

αn1αn2αn3δn1+n2+n3,0 + b
∑

n

αnL
J
−n +

1

q

∑
n>0

nα−nαn +
∑
n>0

nJ k
−nJ

k
n . (35)

This is the most general form of the Hamiltonian, and the modes αn obey the commutation
relation

[αn, αm] = qnδm+n,0. (36)

In order to exhibit the precise comparison, we will collect terms which have the same
number of creation-annihilation operators; starting from (33), we denote the cubic term of HU



On matrix and spin CS models 12775

by H 3
U , the quadratic term in Bn by H 2

U , the terms linear in Bn and LJ
n by H

1,J
U and finally the

pure current term will be denoted by HJ
U .

The following change in the normalization of the fields and their commutation relations
will be needed to perform the comparison:

B ′
n = (α + 2) Bn, n � 1

B ′
−n = αB−n,

[B ′
n, B

′
m] = 2α(α + 2)nδn+m,0.

From now on, we are going to drop the primes and will use the same notation for the new
fields. In terms of the new fields, HU is given by the sum of the following terms:

H 3
U = 1

4α(α + 2)

∑
n�1

(B−nB−mBn+m + B−n−mBnBm) , (37)

H 2
U = 1

2α(α + 2)

∑
n�1

nB−nBn +
α + 1

2α(α + 2)
(B0 + 1)

∑
n�1

B−nBn, (38)

H
1,J
U =

∑
n�1

(
B−nL

J
n + LJ

−nBn

)
+ (α + 1) (B0 + 1) LJ

0 , (39)

HJ
U = 2

∑
n�1

∑
k

nJ k
−nJ

k
n . (40)

Now, let us consider the Hamiltonian (35). We will use a similar notation to refer to the
cubic, quadratic, linear and pure current terms in the Hamiltonian. Changing the normalization
of αn

α′
n = bαn, ∀n

[α′
n, α

′
m] = b2qnδn+m,0,

and again dropping the primes on the new fields, HAJL will then be the sum of

H 3
AJL = 1

2b2q

∑
n,m�1

(α−nα−mαn+m + α−n−mαnαm), (41)

H 2
AJL = 1

b2q

∑
n�1

nα−nαn +
1

b2q
α0

∑
n�1

α−nαn, (42)

H
1,J
AJL =

∑
n�1

(
α−nL

J
n + LJ

−nαn

)
+ α0L

J
0 , (43)

HJ
AJL =

∑
n�1

∑
k

nJ k
−nJ

k
n . (44)

The relation between Bn and αn can be determined. In fact, if the following relation holds, the
two Hamiltonians become equivalent with the same commutation relations.

b2q = 2α(α + 2) α0 = (α + 1)(B0 + 1).

The factor of 2 in HJ
U is not present in HJ

AJL. This is due to a different definition of the current
modes. We can see that there is perfect agreement between the two Hamiltonians. With this,
we have also demonstrated that the bosonized Hamiltonian HU is Hermitian.
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One last comment should be made. If we write the Hamiltonian (31) in terms of the
original bosonization fields ασ ≡ φσ , we will be able to make contact with the collective field
approach which will be summarized in section 4. As a final comment on the current algebra
representation, we mention the following. Here we have described in detail the formalism
in the simplest SU (2) case for purposes of comparing different approaches and describing
some nontrivial applications. As we have mentioned the formalism for general SU (R) was
developed in [9] . Of considerable interest is the case R = N with N → ∞. The current
algebraic representation is well suited for this since it leads to a large N limit of WZW models,
a well-studied subject. Through the large N limit of the current algebra, one realizes a W∞
algebra, the expected symmetry of the matrix model [10]. Aspects of the R = N → ∞ theory
were already given in [50].

4. Collective field theory

For obtaining the collective field theory representation, one considers a permutation symmetric
version of the model with the idea of expressing the theory in terms of collective densities.
Considering the original Hamiltonian (12), given by

H =
∑

i

D2
i −

∑
i �=j

zizj

(zi − zj )2
β(β + Pij ),

we therefore need to perform a similarity transformation to bring the theory into a bosonic
picture. We write the wavefunctions of H as 
 = 
0χ , with χ being a bosonic function. The
form of 
0 then defines the statistics of the model. In the previous construction, we performed
a transformation to the fermionic picture by using 
0 = �β . To obtain a bosonic picture, we
will now require an extra determinant factor in the similarity transformation, 
0 = �β+1. In
that case, the gauged Hamiltonian is

Hβ+1 =
∑

i

D2
i︸ ︷︷ ︸

H 1
β+1

+
(β + 1)

2

∑
i �=j

zi + zj

zi − zj

(Di − Dj)︸ ︷︷ ︸
H 2

β+1

−2β
∑
i<j

θij θji[1 − Pij ]︸ ︷︷ ︸
Hs

β+1

+ EGS(β + 1),

(45)

where θij ≡ zi

zi−zj
. The ground state energy is given by EGS (β + 1) = (β + 1)2 N(N2−1)

12 .

In the last section, we bosonized the Hamiltonian H̃ in terms of current fields [9, 12]. In
this section, we describe in some detail the collective field theory approach. This method was
useful for various matrix model problems and in particular the systems of the Calogero type
[7, 15, 33]. In the case of a spin Calogero model, one can similarly obtain the Hamiltonian
in terms of collective modes in momentum space [13]4. We will also want to obtain the same
result in terms of collective fields in coordinate space, as it will be useful in further perturbative
and nonperturbative studies.

We will start from the Hamiltonian Hβ+1 (one could get a similar result by starting from
H̃ ≡ Hβ). One defines collective densities

φσ (x) =
N∑

i=1

δ (x − xi) δσσi
, φ(x) =

∑
σ

φσ (x) (46)

4 Note that the gauged Hamiltonian found in [13] is related to (45) by changing, in the latter, β + 1 to β on the second
term. The discrepancy comes from a difference on the starting point of each case.
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and its conjugate momentum �σ(x) = δ
δφσ (x)

.5 We take �σ(x) to be non-Hermitian just to
save from writing i’s. In terms of Fourier modes, the fields defined above become (with an n
integer because we are on the circle)

φσ
n =

∫ π

−π

dx einxφσ (x) =
N∑

i=1

zn
i δσσi

, �σ
n = ∂

∂φσ
n

=
∫

dx

2π
e−inx ∂

∂φσ (x)
.

The expressions that follow are obtained through a change of variables following the
standard collective field techniques [46]. We start from (13) and define �̂σ

n ≡ n ∂
∂φσ

n
= n�σ

n

(such that [φσ
n , �̂σ ′

m ] = −mδσσ ′δm,n). Writing the dependence on spin explicitly, the derivative
Di is given by the chain rule

Di = zi

∂

∂zi

=
∑

σ

∑
n

zi

∂φσ
n

∂zi

∂

∂φσ
n

=
∑

σ

∑
n

zi

∂

∂zi

∑
j

zn
j δσσj

 ∂

∂φσ
n

=
∑

σ

∑
n

zn
i δσσi

�̂σ
n .

This implies that for H1, we have

H1 =
∑

i

D2
i =

∑
σ

∑
i

∑
n

δσσi
zi

{
∂zn

i

∂zi

�̂σ
n + zn

i

∑
σ ′

∑
m

∂φσ ′
m

∂zi

∂

∂φσ ′
m

�̂σ
n

}

=
∑

σ

{∑
n

nφσ
n �̂σ

n +
∑
m,n

φσ
n+m�̂σ

m�̂σ
n

}
.

Similarly for H2,

H2 = β + 1

2

∑
i �=j

zi + zj

zi − zj

(Di − Dj)

= (β + 1)

∑
σ=σ ′

+
∑
σ �=σ ′

∑
i �=,j

zi

zi − zj

∑
m

(
zm
i δσσi

δσ ′σj
− zm

j δσ ′σi
δσσj

)
�̂σ

m.

The term with σ = σ ′ is

H 2
σ = (β + 1)

∑
σ

 ∑
n,m�1

φσ
n φσ

m�̂σ
m+n +

∑
m�1

(
φσ

0 − m
)
φσ

m�̂σ
m

 .

But the term with σ �= σ ′ is more complicated. Doing some algebra leads to (note that φn is
not defined for n negative)

H 2
σ �=σ ′ = (β + 1)

∑
σ �=σ ′

 ∑
m,n�1

φσ ′
n φσ

m�̂σ
m+n +

∑
m>0

φσ
0 φσ ′

m �̂σ
m

 .

A related result can be found in [13]. In fact, the terms written above agree with the
corresponding ones from [13].

One is also interested in the expressions for the Hamiltonian in coordinate space, as these
will play an important role when performing small fluctuations around a classical background.
This will be explored further in the sections below. For now, let us express the hamiltonian in
terms of density fields. For H1, we get

H1 = −
∑

i

∂2

∂x2
i

= −
∑

σ

∫
dx φσ (x)∂2�σ(x) −

∑
σ

∫
dx φσ (x)∂�σ (x)∂�σ (x). (47)

5 In this section, the coordinate x has range on the interval [−π, π ] unless said otherwise. Also, the spin variable σ

has possible values σ = ±1.
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To determine H2, we need to write it as

H2 = β + 1

2

∑
i,j

(θij − θji)(Di − Dj)︸ ︷︷ ︸
H21

−β + 1

2

∑
i=j

lim
zi→zj

zi + zj

zi − zj

(Di − Dj)︸ ︷︷ ︸
H22

, (48)

and each term can be found to be

H21 = −β + 1

2

∑
σ,σ ′

∫
dx φσ (x)

(∫
dy φσ ′(y) cot

(
x − y

2

))
[∂�σ (x) − ∂�σ ′

(y)],

H22 = (β + 1)

∫
dx(∂2φσ )(x)�σ (x) = (β + 1)

∫
dx φσ (x)∂2�σ(x).

The term Hs can also be expressed in terms of collective fields. The operator P σσ ′
ij can be

defined by how it acts on φσ
n . We know that the effective Hamiltonian acts on wavefunctions

that depend solely on φσ
n (bosonic functions), so we want to determine the action of Pij on

χ
(
φσ

n

)
. First,

Pijφ
σ
n = Pij

N∑
�=1

zn
�δσσ�

= φσ
n + zn

i

(
δσ,σj

− δσ,σi

)
+ zn

j

(
δσ,σi

− δσ,σj

)
.

So Pij acts as a translation operator, and when acting on a general bosonic wavefunction
χ
(
φσ

n

)
, we have

Pijχ
(
φσ

n

) = e{P(xi ,σi ;xj ,σj )}χ
(
φσ

n

)
, (49)

where

P(xi, σi; xj , σj ) ≡
∑

σ

(
δσσi

− δσσj

)
(�σ (xi) − �σ(xj ))

=
∫ xi

xj

dx(∂x�
σi (x) − ∂x�

σj (x)). (50)

Finally, Hs can be rewritten as6

Hs = −β
∑
i �=j

zizj

(zi − zj )2
(Pij − 1) = β

4

∑
σ,σ ′

∫
dx

∫
dy φσ (x) sin−2

(
x − y

2

)
×{φσ ′(y) − δσσ ′δ (y − x)} {eP(x,σ ;y,σ ′) − 1}

6 In order to write this and other sums that diverge when i = j , we use the following result. Let f (xi , xj ) be a
function that describes some 2-body interaction, either singular or not when i → j . Then,∑
i �=j

f (xi , σi ; xj , σj ) =
∑
i �=j

∑
σ,σ ′

∫
dx δσσi

δσ ′σj
δ(x − xi)

∫
dy δ(y − xj )f (x, σ ; y, σ ′)

=
∑
σ,σ ′

∫
dx

∫
dy f (x, σ ; y, σ ′)

{∑
i,j

−
∑
i=j

}
δσσi

δσ ′σj
δ(x − xi)δ(y − xj )

=
∑
σ,σ ′

∫
dx

∫
dy φσ (x)f (x, σ ; y, σ ′){φσ ′ (y) − δσσ ′δ(y − x)}.

This result allows us to regularize the integrals once we use the density formulation. Another way of writing this
result is by the use of principal value integrals:∑

i �=j

f (xi , σi; xj , σj ) =
∑
σ,σ ′

∫
dx−
∫

dy φσ (x)f (x, σ ; y, σ ′)φσ ′ (y).
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= β

4

∑
σ,σ ′

∫
dx

∫
dy φσ (x) sin−2

(
x − y

2

)
φσ ′(y)

×
{ ∞∑

n=1

1

n!

[∫ x

y

dz∂z(�
σ (z) − �σ ′

(z))

]n
}

. (51)

Note that this interaction term vanishes for σ = σ ′, so there is no issue at y = x. In fact, the
sum over both σ, σ ′ could be substituted by a sum over σ �= σ ′.

To complete the comparison with [13], we still need to confirm this last term of the
Hamiltonian, Hs .

As was seen in (49), the operator Pij acts on bosonic wavefunctions as

eP(x,σ ;y,σ ′) = exp

{∑
n

1

n

(
zn
x − zn

y

) (
�̂σ

n − �̂σ ′
n

)} =:
(
P σσ ′

x

)(
P σσ ′

y

)−1
:,

where

P σσ ′
x = exp

{∑
n

1

n
zn
x

(
�̂σ

n − �̂σ ′
n

)} = exp{�σ(zx) − �σ ′
(zx)},

and zx ≡ eix . If we go to complex coordinates7, we get (as before, we have to be careful in
the integration, as the integration over w will be around the coordinate z)

Hs = β
∑
σ �=σ ′

∮
dz

∮
dw

zw

(z − w)2
φσ (z)φσ ′(w){eP(z,σ ;w,σ ′) − 1}

= β
∑
σ �=σ ′

∮
dz

∮
dw

1

(z − w)2
: zφσ (z)e�σ (z)−�σ ′

(z)wφσ ′(w) e−�σ (z)+�σ ′
(z) : .

Some simplifications in the above expression were due to restricting the expansion of φ to
positive modes: φσ (z) = ∑

n�0 φσ
n z−n−1. There is another way of writing this result:

Hs = β
∑
σ �=σ ′

∮
dη

η

∮
dξ

ξ

∑
k,��0

ηkξ�

∫
dx φσ (x)zk

x

∫
dy φσ ′(y)z�

y

zxzy e
∑

n>0
1
n
(η−n−ξ−n)(�̂σ

n −�̂σ ′
n )

(zx − zy)2

= β

2

∑
σ �=σ ′

∮
dη

η

∮
dξ

ξ

∑
k,��0

ηkξ�φσ
k φσ ′

� e
∑

n>0
1
n
(η−n−ξ−n)(�̂σ

n −�̂σ ′
n )
∑
m>0

m

[(
η

ξ

)m

+

(
ξ

η

)m]
.

These results represent the collective field bosonization of the CS many-body problem.
They are in accordance with the expressions found in [13]. One can further ask regarding
a connection with the bosonization procedure of section 3. In one case, we dealt with a
fermionic effective Hamiltonian and followed standard rules of bosonization. In the other, one
first went to a bosonic picture and then applied the technique of collective fields. Since the
relation between the fermionic and the bosonic pictures can be described in terms of a single
similarity transformation, it is expected that the two versions of the continuum Hamiltonian
are equivalent. We can expect that the identification can be demonstrated by a field theoretic
similarity transformation. Its explicit form remains to be understood.

To conclude this section, we now present the total collective Hamiltonian corresponding
to the spin Calogero–Sutherland model, in coordinate space:

7 In order to go to complex coordinates, remember that φσ (x) has conformal weight 1, much like ψ† in the previous
section, and so transforms like φσ (x) → zφσ (z).
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H = E + β
∑

σ

∫
dx φσ (x)∂2�σ(x) −

∑
σ

∫
dx φσ (x)∂�σ (x)∂�σ (x)

− (β + 1)
∑
σ,σ ′

∫
dx φσ (x)

∫
dy φσ ′(y) cot

(
x − y

2

)
∂�σ (x)

+
β

4

∑
σ,σ ′

∫
dx

∫
dy

φσ (x)φσ ′(y)

sin2
(

x−y

2

) { ∞∑
n=1

1

n!

[∫ x

y

dz ∂z(�
σ (z) − �σ ′

(z))

]n
}

.

(52)

The Hamiltonian thus presented is comparable to what was obtained by the bosonization
procedure of section 3, given by (20), and will be used in the following sections.

5. Spectrum equation

The next two sections will be devoted to the study of some applications of the bosonized spin
CS Hamiltonian. In this section, we will take a second look at the collective form of the
Hamiltonian, and put it in terms of spin and charge bosons, as was done in section 3 of the
paper. In this form of the Hamiltonian, we can use a semi-classical method of determining
the energies, in order to be able to perform small fluctuations.This will result in an eigenvalue
problem of the Marchesini–Onofri type. Then, in section 6, we will describe the formalism in
an example given by a nontrivial background based on exact eigenstates of [41].

5.1. The Marchesini–Onofri kernel

We now go back to the effective Hamiltonian Hβ+1, in its collective form (52), but will
regularize the integrals by the use of principal value integrals. It is easy to check that, this be
the case, (52) can be rewritten as

H = E −
∑

σ

∫
dx φσ (x)∂2�σ(x) −

∑
σ

∫
dx φσ (x)∂�σ (x)∂�σ (x)

− (β + 1)
∑
σ,σ ′

∫
dx φσ (x)−

∫
dy φσ ′(y) cot

(
x − y

2

)
∂�σ (x)

+
β

4

∑
σ �=σ ′

∫
dx−
∫

dy φσ (x) sin−2

(
x − y

2

)
φσ ′(y)

{
eP(xσ ,yσ ′

) − 1
}
,

with E = (β + 1)2 N(N2−1)
12 and

P(x, σ ; y, σ ′) =
∫ x

y

dz ∂z(�
σ (z) − �σ ′

(z)) = (�σ − �σ ′
)(x) − (�σ − �σ ′

)(y). (53)

The next step is to introduce the spin and charge bosons, just like we did in section 3.
Remembering that we are dealing with an su(2) current algebra, let

φ =
∑

σ

φσ , ψ =
∑

σ

σφσ .

Then, as a consequence of �σ ≡ ∂
∂φσ

, we have

�φ ≡ δ

δφ
=
∑

σ

�σ , �ψ ≡ δ

δψ
=
∑

σ

σ�σ .
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With these definitions, we can rewrite the Hamiltonian in terms of the new fields (by using
that φσ = 1

2 (φ + σψ) and �σ = 1
2 (�φ + σ�ψ)). Recalling equations (47), (48) and (51) one

can easily obtain the following results:

H1 = −1

2

∫
dx(∂2φ�φ + ∂2ψ�ψ) − 1

2

∫
dx−
∫

dy δ(x − y)ψ(x)∂�φ(x)∂�ψ(y)

− 1

4

∫
dx−
∫

dy δ(x − y)φ(x)[∂�φ(x)∂�φ(y) + ∂�ψ(x)∂�ψ(y)],

H2 = β + 1

2

∫
dx(∂2φ�φ + ∂2ψ�ψ)

− β + 1

2

∫
dx−
∫

dy φ(y) cot

(
x − y

2

)
[φ(x)∂�φ(x) + ψ(x)∂�ψ(x)].

The only term left to determine is Hs . Because we only have two spins (σ = ±1), the sum
over σ �= σ ′ in Hs can be substituted by a sum σ > σ ′ (which is not really a sum, as the only
possibility is σ = 1, σ ′ = −1). Then using

P(x,↑; y,↓) = (�↑ − �↓)(x) − (�↑ − �↓)(y) = �ψ(x) − �ψ(y),

we can write Hs in the following way:

Hs = β

2

∑
σ>σ ′

∫
dx−
∫

dy φ↑(x)φ↓(y) sin−2

(
x − y

2

)
{e�ψ(x)−�ψ(y) − 1} = H 1

s + H 2
s ,

where after some algebra, one gets

H 1
s = −β

8

∫
dx−
∫

dy
[φ(x)φ(y) − ψ(x)ψ(y)]

sin2
(

x−y

2

) {1 − e�ψ(x)−�ψ(y)},

H 2
s = −β

4

∫
dx−
∫

dy
φ(x)ψ(y)

sin2
(

x−y

2

) sinh[�ψ(x) − �ψ(y)].
(54)

The first conclusion that one can draw is that the interaction term Hs does not depend on
the field �φ . This means that the full Hamiltonian will be at the most quadratic in this field,
and we can proceed to Hermitianize the Hamiltonian in terms of the fields φ,�φ , following
the standard procedure shown in [46, 47]. To do so, let us first rewrite the full Hamiltonian in
a simpler way:

H =
∫

dx ωφ(x)�φ +
∫

dx

∫
dy �φ

x,y�φ(x)�φ(y) + 2
∫

dx

∫
dy �̃x,y�φ(x)�ψ(y)

+
∫

dx ωψ(x)�ψ +
∫

dx

∫
dy �ψ

x,y�ψ(x)�ψ(y) + Hs + E, (55)

where the definitions for these terms are given below:

ωφ(x) = −1

2
∂2φ(x) +

β + 1

2
∂x

[
φ(x)−

∫
dy φ(y) cot

(
x − y

2

)]
, (56)

ωψ(x) = −1

2
∂2ψ(x) +

β + 1

2
∂x

[
ψ(x)−

∫
dy φ(y) cot

(
x − y

2

)]
, (57)

�φ
x,y = −1

4
∂x∂y[δ(x − y)φ(x)], (58)

�ψ
x,y = −1

4
∂x∂y[δ(x − y)φ(x)], (59)

�̃x,y = −1

4
∂x∂y[δ(x − y)ψ(x)]. (60)
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As we said, we are interested in Hemitianizing the Hamiltonian with respect to the fields
φ,�φ . We know from [46, 47] that it can be done by a change of variables, equivalent to the
similarity transformation

φ → φ, �φ → �φ − 1

2

∂ ln J

∂φ
,

where the Jacobian J obeys

∂ ln J

∂φ
=
∫

dy(�φ)−1
x,yω

φ(y). (61)

With this transformation, the first two terms in (55), i.e. the terms that have no �ψ dependence,
become8

Hφ → −1

4

∫
dx∂�φ(x)φ(x)∂�φ(x) +

(β + 1)

2

∫
dx φ(x)∂x

[
−
∫

dy φ(y) cot

(
x − y

2

)]
− N

12
(β + 1)2 +

π2

3
(β + 1)2

∫
dx φ3(x) +

β2

4

∫
dx

(∂φ)2

φ
, (62)

where we have used the following identity (which can be proven by Fourier transform):

1

4

∫
dx φ(x)

[
−
∫

dy φ(y) cot

(
x − y

2

)]2

= π2

3

∫
dx φ3(x) − N3

12
. (63)

But these terms are not the only ones that get changed with the transformation. The third
term of (55) also gets shifted, as it has a field �φ :

Hφψ → 2
∫

dx

∫
dy �̃x,y

(
�φ(x) − 1

2
−
∫

dz
(
�φ

x,z

)−1
ωφ(z)

)
�ψ(y)

= 2
∫

dx

∫
dy �̃x,y�φ(x)�ψ(y)

+
1

2

∫
dx ∂x

{
ψ(x)

(∂φ)

φ
− (β + 1) ψ(x)

∫
dy φ(y) cot

(
x − y

2

)}
�ψ(y).

All the other terms in the Hamiltonian do not change under the transformation. The total
Hamiltonian after the transformation becomes

H̃ = Hφ + 2
∫

dx

∫
dy �̃x,y�φ(x)�ψ(y) +

∫
dx ω̃ψ(x)�ψ

+
∫

dx

∫
dy �ψ

x,y�ψ(x)�ψ(y) + Hs, (64)

where we have defined all the above quantities, except for the new ω̃ψ , given by

ω̃ψ(x) = 1

2
∂x

(
ψ

∂xφ

φ
− ∂xψ

)
. (65)

The objective of such a transformation is to be able to study fluctuations about a single
matrix background, which is a stationary point of the explicitly Hermitian effective potential
in the fields φ. As we will be interested in small fluctuations around this stationary point, we
can still expand the term Hs of the Hamiltonian up to third order in the fields (ignoring higher
order effects). Keeping only linear, quadratic and cubic terms, we have H 1

s ≈ 0, and so

Hs ≈ −β

4

∫
dx−
∫

dy
[φ(x)ψ(y) − ψ(x)φ(y)]

sin2
(

x−y

2

) �ψ(x). (66)

8 It is easy to show that ∂x∂y(�
φ
x,y)−1 = − 4

φ(x)
δ(x − y).
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We still want to make another assumption. We will assume that the spin field ψ does not
acquire an expectation value in the classical equations of motion, and so we will drop the term
with double �ψ�ψ in the Hamiltonian, Hψψ . The reason for this is that this term is directly
related to the term of current–current interaction (the J 2 term in section 3). In fact, ψ was
seen to be the bosonic field used to bosonize the current terms (in section 3, we called it β)
and as the current interaction will be zero at the classical stationary point, the term Hψψ of the
Hamiltonian will not be included in the final version of the Hamiltonian.

Finally, we write the full Hamiltonian as the sum of

H = Hφ + �H,

with

�H = −1

2

∫
dx∂�φ(x)ψ(x)∂�ψ(x) +

1

2

∫
dx∂x

(
ψ

∂xφ

φ
− ∂xψ

)
�ψ

− β

4

∫
dx−
∫

dy
[φ(x)ψ(y) − ψ(x)φ(y)]

sin2
(

x−y

2

) �ψ(x).

As mentioned before, our intention is to consider small fluctuations around a classical
background field configuration. The term Hφ of the Hamiltonian allows us, in the large N
limit, to determine the classical background φ(x) = φ0(x), with ψ0 = 0 (solving the variation
associated with Hφ and ignoring several terms which are of higher order in 1/N [1, 7, 48]).
Also, to obtain φ0 one imposes that �ψ does not acquire a classical expectation value. The
ground state thus obtained has M↓ = M↑ = N

2 (as was said, ψ will also have no classical
expectation value), and J↓ = J↑ = J .

To obtain energies above the ground state, we need to allow ψ and �ψ to have a nonzero
expectation value, and solve for the full set of equations of motion. But allowing �ψ to
have a nonzero expectation value invalidates expansion (66). We would have to use the full
expression (54) and only perform an expansion once we have the classical values for the fields.
This expansion would then truncate by use of the theorems found in [41]. These theorems
allow us to determine the energy contribution of the spin-interaction term in the Hamiltonian,
in particular proving that the higher spin states do not contribute.

To study the theory perturbatively, as long as we consider that �ψ does not acquire an
expectation value, we can use the results obtained in this section.

5.2. Noncritical strings

In applications to both critical and noncritical strings, linearized eigenvalue problems of this
kind appear. In recent studies of the AdS/CFT correspondence [28], a similar equation is seen
to determine the spectrum of BPS states. The eigenvalue problem itself plays a role in the
nontrivial map between the matrix model and AdS spacetime.

While the regular harmonic oscillator participates in the 1/2 BPS map, for the 2D
noncritical string, one requires an inverted oscillator potential. So, for the noncritical strings,
the classical stationary solution (with �φ ≡ 0) is given by φ0(x) ∝

√
x2 − µ [10, 40, 49, 54].

In the background of the classical value for the field φ, we will now want to study the
interaction part of the Hamiltonian:

�H |φ0 = −β

4

∫
dx−
∫

dy
[φ0(x)ψ(y) − ψ(x)φ0(y)]

sin2
(

x−y

2

) �ψ(x)

=
∫

dx−
∫

dy ψ(x)K(x, y)�ψ(x), (68)
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where we have∫
dx ψ(x)

∫
dyK(x, y)�ψ(x) = −β

4

∫
dx ψ(x)

∫
dy φ0(y)

�ψ(y) − �ψ(x)

sin2
(

x−y

2

) , (69)

which acts on wavefunctionals9 � = ∫
dz f (z)ψ(z). This −K(x, y) is the Marchesini–Onofri

kernel [40, 57]. We conclude that the Marchesini–Onofri kernel comes directly from the
spin-interaction term of the Hamiltonian.

We are interested in solving the eigenvalue problem (�H)� = ε�, which can be written
in a simpler way. Consider a complete set of eigenfunctions of K(x, y), {fn(x)}, with the
normalization condition∫

dx φ0(x)fn(x)fm(x) = δmn.

Expand the fields ψ,�ψ in this basis:

�ψ(x) = φ0(x)
∑

n

fn(x)�n, ψ(x) =
∑

n

fn(x)ψn.

With these expansions, we can write �H as

�H =
∑
m,n

ψn�m

∫
dx fn(x)−

∫
dy K(x, y)φ0(y)fm(y) =

∑
n

ωnψn�n,

where the frequencies ωn are defined by the following eigenvalue equation:

−
∫

dy φ0(y)K(x, y)fm(y) = ωmφ0(x)fm(x). (70)

One can use the semiclassical results found in [40] to evaluate these frequencies, as the
eigenvalue problems found in each case are equivalent. The result is then

ωn = εn = (n + 1)ω(µ) + η(µ),

with ω (µ) = 1
η(µ)

= 2β

|ln µ| . The term ω (µ) measures the splitting in the singlet energies.
These splittings tend to zero in the µ → 0 limit (double scaling limit). The term η (µ) gives
the difference in energy between the singlet state (corresponding to trivial representation if we
set the interaction term to zero) and the adjoint state due to the interaction term. Up to leading
order, η (µ) can be identified with the ground state energy ω0, divergent in the double scaling
limit [40].

In [56] the same eigenvalue problem was studied, and it was shown to be equivalent to

ε̂h(τ ) = − 1

π

∫ ∞

−∞

h(τ ′)
4 sinh2

(
τ−τ ′

2

) + v̂(τ )h(τ ), (71)

with v̂ (τ ) = − 1
π

τ
tanh τ

, and ε̂ = ε + ln µ

2π
, where ε is the energy in the original eigenvalue

problem, h(τ) = φ0(τ )f (τ ), and τ is the time-of-flight coordinate: x = √
2µ cosh τ . In the

energy ε̂, we subtracted the divergent piece, ε0 ≈ η (µ), renormalizing the energy.

9 Recall that the fields φσ have to obey the following normalization:∫
dxφσ (x) = Mσ and

∑
σ

Mσ = N.

Furthermore, if the fields �σ have a classical expectation value of Jσ , in coordinate space we will have∫
dx φσ (x)∂�σ (x) = Mσ Jσ .
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The comparison to string theory allows us to interpret this divergent piece of the energy.
To perform this comparison, valid for large τ , we have to identify τ ∼ −ϕ, where ϕ is the
Liouville direction [39]. The divergence that leads to the renormalization of the energy is then
basically related with the fact that the string is stretching from the Liouville wall to −∞.

Also in [56], a scattering phase (in the background of the inverted oscillator potential)
was conjectured to be

δ (ε̂) = −
∫ ∞

−∞

(
πε′

tanh πε′ + πε′
)

dε′, (72)

as it is in agreement with the scattering phase of the Liouville model in the string theory
approach. This result was seen to come from solving the Marchesini–Onofri eigenvalue
problem, first for the asymptotic limits ε̂ � 0 and ε̂ � 0 [56] and later for any energy [36].

6. Nontrivial eigenstates and backgrounds

Of major interest in studies and applications of matrix models are possibilities of introducing
nontrivial backgrounds in the theory. These are in correspondence with nontrivial states of the
many-body problem. In the case of free fermions, these were for example states representing
particles and holes and associated solitonic configurations [6, 48]. In the present case of spin
Calogero problem, an interesting class of nontrivial exact eigenstates was given by Ha and
Haldane in [41]. They constructed a many-body wavefunction of the form given by


 = �β�̃χ, (73)

where

� =
∏
i<j

(zi − zj )
∏

i

z
− N−1

2
i

�̃ =
∏
i<j

(zi − zj )
δσi σj ei π

2 sgn(σi−σj ), (74)

χ(φn) = �iz
Jσi

i = ei
∑

j Jσj
xj = ei

∑
σ Jσ

∫
dxxφσ (x), (75)

and evaluated the corresponding energy.
It is our interest to consider this state in the collective field theory. The strategy is to

perform a similarity transformation, but now in terms of the new wavefunction


0 = �β�̃. (76)

The resulting effective Hamiltonian describes the theory above the nontrivial quantum state.
It can be written as a sum of several terms:

H ≡ 
−1
0 H
0 =

∑
i

D2
i︸ ︷︷ ︸

H 1

+ β
∑
i<j

(θij − θji)(Di − Dj)︸ ︷︷ ︸
H 2

+ 2
∑
i �=j

θij δσiσj
Di︸ ︷︷ ︸

H 3

+H int + H local + E.

(77)

There are two contributions to the ground state energy, one local, H local, and the other
nonlocal, E. They can be determined to be

E = E0 +
1

2
(β + 1)

∑
σ

Mσ (Mσ − 1) +
1

3

∑
σ

Mσ (Mσ − 1)(Mσ − 2), (78)
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H local = β
∑

i �=j �=k

(zi + zj )ziδσiσk

(zi − zj )(zi − zk)
+ β

∑
i �=j

zizj

(zi − zj )2

(
2δσiσj

− 1
)
, (79)

where the conserved quantity Mσ (the number of particles with spin σ ) is defined as before:

Mσ =
∑

i

δσσi
=
∫

dx φσ .

The interaction term H int can be written as

H int = −β
∑
i �=j

θij θji (−1)
δσi σj

∏
k(�=i,j)

(
zk − zi

zk − zj

)δσj σk
−δσi σk

Pij

= β

4

∑
i �=j

sin−2

(
xi − xj

2

)
(−1)

δσi σj exp

 ∑
k(�=i,j)

(
δσkσi

− δσkσj

)
ln

(
zk − zj

zk − zi

)Pij .

This Hamiltonian H will now act on bosonic wavefunctions χ . In particular, the spin-exchange
operator Pij present in the interaction term will now simply act as a translation operator, as
was seen in earlier sections.

Comparing (13) with (77), one can easily see that in order for the wavefuncion χ to
be bosonic, and the original Hamiltonian fermionic, in both cases (H̃ and H ) �β has to be
bosonic. This is due to the factor �̃ being antisymmetric in exchange of pairs (zi, σi). Note
that for β even, the factor �β is symmetric under exchange of zi ↔ zj (and antisymmetric
for β odd), while the factor �̃ is always antisymmetric under exchange of pairs (zi, σi).

As was done to Hβ+1 in section 4, we can obtain the collective form of this Hamiltonian
(as it is now bosonic) in coordinate space. Writing each term separately, H 1 and H 2 are same
as before:

H 1 = −
∑

σ

∫
dx φσ (x)∂2�σ(x) −

∑
σ

∫
dx φσ (x)∂�σ (x)∂�σ (x)

H 2 = β

∫
dx φσ (x)∂2�σ(x) − β

2

∑
σ,σ ′

∫
dx φσ (x)

∫
dy φσ ′(y)

× cot

(
x − y

2

)
[∂�σ (x) − ∂�σ ′

(y)].

On the other hand, we have a new term H 3, which will be given by

H 3 = −i
∑

σ

∫
dx

∫
dy φσ (x) [φσ (y) − δ (x − y)]

(
1 − i cot

(
x − y

2

))
∂�σ (x).

Finally, we have to deal with the interaction term H int and the local term H local. In fact, once
in the collective form, H local can be separated into H local = ∑

σ Hσ
local +

∑
σ �=σ ′ H

σσ ′
local, where

Hσ
local = −β

3
Mσ(Mσ − 1)(Mσ − 2) +

β

2
(N − 2)Mσ (Mσ − 1),

Hσσ ′
local = 2β

∫
dx

∫
dy

∫
dz

eiy

eix − eiy

eix

eix − eiz
φσ (x)φσ ′(y)[φσ (z) − δ(x − z)]

+
β

4

∫
dx

∫
dy φσ (x) sin−2

(
x − y

2

)
φσ ′(y).

We conclude that the first term in H local is in fact nonlocal and contributes directly to the
energy.
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By knowing that Pij is applied to a bosonic wavefunction, the collective form of
H int = ∑

σ �=σ ′ Hσσ ′
int , comes out to be

Hσσ ′
int = −β

4

∫
dx

∫
dy

φσ (x)φσ ′(y)

sin2
(

x−y

2

) exp

{∫
dz ln

(
eiz − eiy

eiz − eix

)
(φσ (z) − δ (z − x))

}

× exp

{∫
dz′ ln

(
eiz′ − eix

eiz′ − eiy

)
(φσ ′(z′) − δ(z′ − y))

}
exp

{∫ x

y

dw ∂(�σ − �σ ′
)

}
.

We find that the final collective Hamiltonian will be given by

H = H 1 + H 2 + H 3 +
∑
σ �=σ ′

(
Hσσ ′

local + Hσσ ′
int

)
+ E,

where

E = β2 N(N2 − 1)

12
+

1

2
(β + 1)

∑
σ

Mσ (Mσ − 1) +
1 − β

3

∑
σ

Mσ (Mσ − 1)(Mσ − 2).

Our objective is to apply the Hamiltonian to the bosonic wavefunction χ(φσ ). The
eigenvalue equation gives Hα(χ) = Eαχ , where α refers to any of the terms of the
Hamiltonian. We now determine the various contributions to the energy.

In order to do so, we will need the following results:

�σ(x)χ = δ

δφσ (x)
exp

{
i
∑
σ ′

Jσ ′

∫
dy yφσ ′

(y)

}
= iJσ xχ,

�σ ′(y)�σ (x)χ = iJσx�σ ′(y)χ = −Jσ Jσ ′xyχ.

For the first terms of the Hamiltonian, the results for the corresponding energies are
straightforward. From H 1 and H 3 terms, we have

E1 + E3 =
∑

σ

J 2
σ Mσ +

∑
σ

JσMσ (Mσ − 1). (80)

The contribution from the H 2 term is

E2 = β
∑
σ,σ ′

∫
dx

∫
dy φσ (x)φσ ′(y)

eixJσ − eiyJσ ′

eix − eiy
− βN

∑
σ

JσMσ (81)

The local term does not have operators and contributes to the energy as it is

Elocal =
∑
σ �=σ ′

Hσσ ′
local.

According to [41], these local terms will be seen to cancel with local terms coming from
Hσσ ′

int . We now want to calculate the energy corresponding to this last term of the Hamiltonian.
The corresponding energy (summing over different spins) is given by

Eint = −β

2

∑
σ>σ ′

∫
dx−
∫

dy
φσ (x)φσ ′(y)

sin2
(

x−y

2

) exp

{∫
dz ln

(
eiz − eiy

eiz − eix

)
(φσ (z) − δ (z − x))

}

× exp

{∫
dz′ ln

(
eiz′ − eix

eiz′ − eiy

)
(φσ ′(z′) − δ(z′ − y))

}(
eix

eiy

)(Jσ −Jσ ′ )

. (82)

We are interested in terms up to third order in fields φσ and �σ (so that Jσ count as a
field, as they are related to the classical value of the field �σ ). For that we will basically state
the ansatz given in [41] and use their theorems. The main goal is not to have local terms in
the final energy. First, we choose M↓ � M↑ (no loss of generality). Now, to obtain an energy
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independent of local terms, we also have to have 0 � Jσ − Jσ ′ � Mσ ′ − Mσ + 1 for σ > σ ′,
and in this case the theorems proved in the same paper will give

Eint = −β

3

∑
σ>σ ′

Mσ(Mσ − 1)(3Mσ ′ − Mσ − 1) − β
∑
σ>σ ′

Mσ(Mσ ′ − Mσ)(Jσ − Jσ ′)

+ β
∑
σ>σ ′

Mσ(Jσ − Jσ ′)2 − E2 − Elocal. (83)

The conclusions we can draw from this result is that if we restrict 0 � Jσ −Jσ ′ � Mσ ′ −Mσ +1
(σ > σ ′), then all contributions from terms of order O((Jσ − Jσ ′)3) and higher vanish. Also
the nonlocal terms will cancel.

The final result for the energy will be, once all terms are gathered,

E =
∑

σ

Eσ +
∑
σ>σ ′

Eσσ ′
,

where

Eσ = β2 N(N2 − 1)

24
+

1

2
{βN + (1 − β)} Mσ (Mσ − 1) +

1 − β

3
Mσ (Mσ − 1) (Mσ − 2)

+ Jσ Mσ (Mσ − 1) + J 2
σ Mσ ,

Eσσ ′ = −β

3
Mσ(Mσ − 1)(3Mσ ′ − Mσ − 1)

−βMσ (Mσ ′ − Mσ)(Jσ − Jσ ′) + βMσ (Jσ − Jσ ′)2.

These are the the energies due to 1-spin and 2-spin interactions, and are the restriction of
the general case found in [41] to the SU(2) case (the sum on σ > σ ′ is in fact just one
term, σ = ↑, σ ′ = ↓). We have therefore seen how the nontrivial many-body energy of
[41] is obtained in the continuum, collective field formalism. This example also serves as a
demonstration of the method in describing nontrivial semiclassical backgrounds. Here, we
had a state where both the charge and the spin field exhibited nonzero classical expectation
values. We have seen how the collective field theory is formulated in this new background. The
associated collective field fluctuations give the physical degrees of freedom in this background.

7. Conclusions

We have given a study of continuum, field theoretic techniques of relevance to matrix and
many-body problems. These techniques have definite condensed matter application. We have
featured in the text various connections to low-dimensional strings. It is expected that the
methods that we have described will be of continuing relevance in these subjects and will play a
role in understanding nonperturbative physics of low-dimensional black holes and noncritical
strings [24, 26, 29, 52, 58, 62, 69]. This review was concerned with details of the simplest
SU (2) theory. The more general case of SU (R) was given in [9]. As we have mentioned of
particular interest to string model applications is the large R = N limit. In this limit one has
a full presence of [50] algebra. A basic description of this limit is given in [50] based on the
large N WZW model. Generally, this limit exhibits an infinite number of bosonic fields and
coupling of W∞ degrees of freedom to the original collective boson. Theories of this kind
were given in [11] and the recent work [43].

The larger Yangian symmetry and W∞ appearing in these theories might be of broader
relevance, for example, to higher dimensional bosonization [44]. There is also the potential
of these models to provide a quantum description of 3D or 4D noncritical membranes, as was
discussed in [50]. Finally, the continuum collective representation (of the fermion droplet)
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was seen recently to play a central role in the 5D AdS/CFT correspondence through 1/2 BPS
states [3, 16, 22, 27, 28, 45, 55]. It is expected that the continuum field theories of the extended
models will also play a major role in the correspondence, in sectors with less supersymmetry.
The collective field map provided a bridge between a one-dimensional matrix theory and a
two-dimensional string theory, so it is expected that the extension of this will give a mapping
of the full AdS/CFT correspondence.
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